DocumentCode :
3175698
Title :
A novel approach to model error modelling using the expectation-maximization algorithm
Author :
Delgado, R.A. ; Goodwin, Graham C. ; Carvajal, Rodrigo ; Aguero, Juan C.
Author_Institution :
Sch. of Electr. Eng. & Comput. Sci., Univ. of Newcastle, Newcastle, NSW, Australia
fYear :
2012
fDate :
10-13 Dec. 2012
Firstpage :
7327
Lastpage :
7332
Abstract :
In this paper we develop a novel approach to model error modelling. There are natural links to others recently developed ideas. However, here we make several key departures, namely (i) we focus on relative errors; (ii) we use a broad class of model error description which includes, inter alia, the earlier idea of stochastic embedding; (iii) we estimate both, the nominal model and undermodelling simultaneously using the Expectation-Maximization (EM) algorithm. Simulation studies illustrate the performance of the proposed technique.
Keywords :
error analysis; expectation-maximisation algorithm; expectation-maximization algorithm; model error description; model error modelling; relative errors; Biological system modeling; Computational modeling; Estimation; Kalman filters; Numerical models; Stochastic processes; Uncertainty; EM algorithm; model error modelling; system identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on
Conference_Location :
Maui, HI
ISSN :
0743-1546
Print_ISBN :
978-1-4673-2065-8
Electronic_ISBN :
0743-1546
Type :
conf
DOI :
10.1109/CDC.2012.6426633
Filename :
6426633
Link To Document :
بازگشت