DocumentCode :
3178064
Title :
A note on quasi-uniform distributions and Abelian group representability
Author :
Thomas, Eldho K. ; Oggier, Frédérique
Author_Institution :
Sch. of Phys. & Math. Sci., Nanyang Technol. Univ., Singapore, Singapore
fYear :
2012
fDate :
22-25 July 2012
Firstpage :
1
Lastpage :
5
Abstract :
In this note, we study quasi-uniform distributions that are obtained from finite groups. We derive a few simple properties of entropic vectors obtained from Abelian groups, and consider the problem of determining when non-Abelian groups can provide richer entropic vectors than Abelian groups. We focus in particular on the family of dihedral groups D2n, and show that when 2n is not a power of 2, the induced entropic vectors for two variables cannot be obtained from Abelian groups, contrarily to the case of D8 which does not provide more than Abelian groups.
Keywords :
entropy; group theory; Abelian group representability; dihedral groups; entropic vectors; finite groups; quasiuniform distributions; Correlation; Educational institutions; Entropy; Indexes; Information theory; Random variables; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing and Communications (SPCOM), 2012 International Conference on
Conference_Location :
Bangalore
Print_ISBN :
978-1-4673-2013-9
Type :
conf
DOI :
10.1109/SPCOM.2012.6290020
Filename :
6290020
Link To Document :
بازگشت