DocumentCode :
317947
Title :
Neuro-fuzzy multi-model control using Sugeno inference and Kohonen tuning in parameter space
Author :
Tomescu, Bogdan ; Vanlandingham, H.F.
Author_Institution :
Bradley Dept. of Electr. Eng., Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA
Volume :
2
fYear :
1997
fDate :
12-15 Oct 1997
Firstpage :
1028
Abstract :
A multi-model adaptive control scheme is introduced. It makes use of Kohonen neural structures and Sugeno fuzzy inference in adapting and switching the control action of the multi-model bank respectively. The structure can be easily put in a parametrized gain scheduling framework, practical to engineering situations. A simple example of a tracking filter (radar) has been simulated with good results
Keywords :
adaptive control; control system synthesis; fuzzy control; fuzzy logic; inference mechanisms; neurocontrollers; self-organising feature maps; transfer functions; tuning; Kohonen neural structures; Kohonen tuning; Sugeno inference; control action; multi-model adaptive control scheme; neuro-fuzzy multi-model control; parameter space; parametrized gain scheduling framework; tracking filter; Adaptive control; Control systems; Electric variables control; Power electronics; Power system modeling; Radar tracking; State feedback; State-space methods; Tracking loops; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation., 1997 IEEE International Conference on
Conference_Location :
Orlando, FL
ISSN :
1062-922X
Print_ISBN :
0-7803-4053-1
Type :
conf
DOI :
10.1109/ICSMC.1997.638083
Filename :
638083
Link To Document :
بازگشت