DocumentCode :
3180037
Title :
An Adaptive Gauss Filtering Method
Author :
Ueng, Shyh-Kuang ; Cheng, Hai-Peng ; Lu, Ruey-Yuan
Author_Institution :
Nat. Taiwan Ocean Univ., Chi-lung
fYear :
2008
fDate :
5-7 March 2008
Firstpage :
127
Lastpage :
134
Abstract :
An adaptive filtering method for volume data is presented in this paper. In this filtering method, the input data set is re-sampled to create a hierarchy of multiple-level data sets. A data classification task is performed at each level of the data pyramid to decide the local structure types. Data voxels are classified as linear, planar, or blob structures, based on the gradients and the eigenvalues of Hessian matrices. The classification results are used to adjust the shapes and orientations of filters such that noises are suppressed while key features are preserved.
Keywords :
Hessian matrices; adaptive filters; eigenvalues and eigenfunctions; filtering theory; signal classification; Hessian matrices; adaptive Gauss filtering method; data classification task; data pyramid; data voxels; eigenvalues; multiple-level data sets; Adaptive filters; Data mining; Data visualization; Eigenvalues and eigenfunctions; Filtering; Gaussian processes; Noise shaping; Shape; Transfer functions; Transmission line matrix methods; I.3.3 [Computer Graphics]: Picture/Image Generation¿Antialiasing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Visualization Symposium, 2008. PacificVIS '08. IEEE Pacific
Conference_Location :
Kyoto
Print_ISBN :
978-1-4244-1966-1
Type :
conf
DOI :
10.1109/PACIFICVIS.2008.4475468
Filename :
4475468
Link To Document :
بازگشت