DocumentCode :
3180391
Title :
A Bayesian classifier by using the merging RBF networks
Author :
Jiang, Minghu ; Gielen, Ceorges ; Deng, Brixing ; Tang, Xiaofang ; Ruan, Qitiqi ; Yuan, Baorong
Author_Institution :
Dept. of Electr. Eng., Katholieke Univ., Leuven, Heverlee, Belgium
Volume :
2
fYear :
2002
fDate :
26-30 Aug. 2002
Firstpage :
1167
Abstract :
In paper we propose a Bayesian classifier for the multiclass problem by using the merging RBF networks. The estimation of probability density function (PDF) uses a Gaussian mixture model updated with the EM algorithm. The centers and variances of RBF networks are gradually updated to merge the basis united by the supervised gradient descent of the error energy function. The algorithms are used to construct the RBF networks and to reduce the number of basis units. The experimental simulations show the validity of the proposed method.
Keywords :
Gaussian distribution; belief networks; gradient methods; learning (artificial intelligence); maximum likelihood estimation; optimisation; pattern classification; probability; radial basis function networks; Bayesian classifier; EM algorithm updating; Gaussian mixture model; PDF estimation; basis units; error energy function; maximum likelihood estimation; merging RBF networks; multiclass problem; probability density function; supervised gradient descent; Bayesian methods; Density functional theory; Error correction; Information science; Maximum likelihood estimation; Merging; Neural networks; Parameter estimation; Probability density function; Radial basis function networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing, 2002 6th International Conference on
Print_ISBN :
0-7803-7488-6
Type :
conf
DOI :
10.1109/ICOSP.2002.1179997
Filename :
1179997
Link To Document :
بازگشت