DocumentCode :
3180428
Title :
Non-stationary texture segmentation using an AM-FM model
Author :
Pattichis, M.S. ; Christodoulou, C.I. ; Pattichis, C.S. ; Bovik, A.C.
Author_Institution :
Lab. for Vision Syst., Texas Univ., Austin, TX, USA
Volume :
3
fYear :
1997
fDate :
9-12 Jun 1997
Firstpage :
1552
Abstract :
We present a novel method for segmenting non-stationary textures. Our approach uses a multidimensional AM-FM representation for the texture, and provides the FM features to an SOFM-LVQ neural network system that performs the segmentation. For the segmentation, we use the eigenvalues of the instantaneous frequency gradient tensor; and show how these eigenvalues capture the non-stationary structure of a texture. For a woodgrain image, the segmentation results are shown to capture the essential non-stationary nature of the grain
Keywords :
amplitude modulation; eigenvalues and eigenfunctions; feature extraction; frequency modulation; image segmentation; image texture; self-organising feature maps; AM-FM demodulation; AM-FM model; SOFM-LVQ neural network; eigenvalues; feature extraction; frequency gradient tensor; multidimensional image representation; nonstationary texture segmentation; woodgrain image; Computer science; Demodulation; Eigenvalues and eigenfunctions; Electronic mail; Frequency estimation; Frequency modulation; Image segmentation; Machine vision; Neural networks; Tensile stress;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks,1997., International Conference on
Conference_Location :
Houston, TX
Print_ISBN :
0-7803-4122-8
Type :
conf
DOI :
10.1109/ICNN.1997.614124
Filename :
614124
Link To Document :
بازگشت