DocumentCode :
3182012
Title :
Acoustic spectral estimation using higher order statistics
Author :
Dubnov, Shlomo ; Tishby, Naftali
Author_Institution :
Inst. for Comput. Sci., Hebrew Univ., Jerusalem, Israel
fYear :
1994
fDate :
9-13 Oct 1994
Firstpage :
1
Abstract :
Assuming an autoregressive (AR) filter model driven by a non-Gaussian white noise, we formulate a general parameter estimation problem. A maximum likelihood solution gives an AR estimate of the filter and the probability distribution function parameters for non-Gaussian input. The proposed method is optimal in the information theoretic sense, giving the most probable model for the source and filter under the higher order statistics constrains of the observed signal. Analysis of human singing voices and musical instruments is presented and its acoustic interpretation is discussed
Keywords :
acoustic signal processing; acoustic spectral estimation; autoregressive filter model; higher order statistics; human singing voices; maximum likelihood; musical instruments; nonGaussian white noise; parameter estimation; probability distribution; Constraint theory; Higher order statistics; Humans; Information filtering; Information filters; Maximum likelihood estimation; Parameter estimation; Probability distribution; Speech analysis; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 1994. Vol. 3 - Conference C: Signal Processing, Proceedings of the 12th IAPR International Conference on
Conference_Location :
Jerusalem
Print_ISBN :
0-8186-6275-1
Type :
conf
DOI :
10.1109/ICPR.1994.577110
Filename :
577110
Link To Document :
بازگشت