Title :
Numerical solution of optimal control problems
Author :
Kazemi, Mohammad A. ; Miri, Mehdi
Author_Institution :
North Carolina Univ., Charlotte, NC, USA
Firstpage :
0.583333333333333
Abstract :
A numerical method for solving optimal control problems is presented. The method consists of representing the solution of the optimal control problem by a Chebyshev polynomial, discretizing the problem using a cell averaging technique, thereby reducing the problem to a parameter optimization problem, applying the Lagrange multiplier method, and finally Newton´s method. This method is efficient, easy to code, and yields accurate results. A numerical example is provided, and a comparison is made with a similar method in the literature
Keywords :
Newton method; numerical analysis; optimal control; polynomials; Chebyshev polynomial; Lagrange multiplier method; Newton´s method; cell averaging technique; numerical method; numerical solution; optimal control problems; parameter optimization problem; Chebyshev approximation; Differential equations; Integral equations; Lagrangian functions; Mathematics; Newton method; Optimal control; Optimization methods; Polynomials;
Conference_Titel :
Southeastcon '93, Proceedings., IEEE
Conference_Location :
Charlotte, NC
Print_ISBN :
0-7803-1257-0
DOI :
10.1109/SECON.1993.465722