DocumentCode :
3184167
Title :
Sparse Fuzzy System Generation by Rule Base Extension
Author :
Johanyak, Zsolt Csaba ; Kovacs, Szilveszter
Author_Institution :
Kecskemet Coll., Kecskemet
fYear :
2007
fDate :
June 29 2007-July 2 2007
Firstpage :
99
Lastpage :
104
Abstract :
This paper aims the introduction and comparison of two novel fuzzy system generation methods that implement the concept of incremental Rule Base Extension (RBE). Both methods automatically obtain from given input-output data a low complexity fuzzy system with a sparse rule base.
Keywords :
computational complexity; fuzzy reasoning; fuzzy set theory; fuzzy systems; interpolation; learning (artificial intelligence); fuzzy rule interpolation-based reasoning; fuzzy set theory; incremental rule base extension; low-complexity fuzzy system; sparse fuzzy system generation method; Clocks; Educational institutions; Fuzzy sets; Fuzzy systems; Hardware; Information technology; Interpolation; MIMO; Parameter estimation; Performance analysis; fuzzy rule interpolation; rule base extension; rule base generation; sparse rule base;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Engineering Systems, 2007. INES 2007. 11th International Conference on
Conference_Location :
Budapest
Print_ISBN :
1-4244-1147-5
Electronic_ISBN :
1-4244-1148-3
Type :
conf
DOI :
10.1109/INES.2007.4283680
Filename :
4283680
Link To Document :
بازگشت