DocumentCode :
3185753
Title :
Effects of the hydrostatic pressure in in vitro beating cardiac syncytia in terms of kinematics (kinetic energy and beat frequency) and syncytia geometrical-functional classification
Author :
Fassina, Lorenzo ; Di Grazia, Antonio ; Naro, Fabio ; Aguanno, Salvatore ; Cornacchione, Marisa ; Cusella De Angelis, Maria Gabriella ; Sardi, F. ; Magenes, G.
Author_Institution :
Dipt. di Ing. Ind. e dell´Inf., Univ. of Pavia, Pavia, Italy
fYear :
2013
fDate :
3-7 July 2013
Firstpage :
854
Lastpage :
857
Abstract :
Many important observations and discoveries in heart physiology have been made possible using the isolated heart method of Langendorff, e.g. the discovery of the very famous Frank-Starling law of the heart. Nevertheless, the Langendorff´s method has some limitations and disadvantages such as the probability of preconditioning and a high oxidative stress, leading to the deterioration of the contractile function. To avoid the preceding drawbacks associated to the use of a whole heart, we have alternatively used beating mouse cardiac syncytia cultured in vitro in order to assess the ergotropic and chronotropic effects of both increasing and decreasing hydrostatic pressures. To achieve the preceding aim, we have developed a method based on image processing analysis to evaluate the kinematics of that pressure-loaded beating syncytia starting from the video registration of their contraction movement. We have verified the Frank-Starling law of the heart in in vitro beating cardiac syncytia and we have obtained their geometrical-functional classification. The present method could be used in in vitro studies of beating cardiac patches, as alternative to the Langendorff´s heart in biochemical, pharmacological, and physiology studies, and, especially, when the Langendorff´s technique is inapplicable. Furthermore, the method could help, in heart tissue engineering and bioartificial heart researches, to “engineer the heart piece by piece”.
Keywords :
biomechanics; cardiology; cellular biophysics; image classification; image registration; medical image processing; muscle; video signal processing; Frank-Starling law; Langendorff´s method; beat frequency; bioartificial heart researches; biochemical study; chronotropic effects; contraction movement; ergotropic effects; heart tissue engineering; hydrostatic pressure effects; image processing analysis; in vitro beating cardiac syncytia; kinetic energy; pharmacological study; physiology study; pressure-loaded beating syncytia kinematics; syncytia geometrical-functional classification; video registration; Educational institutions; Heart; In vitro; Kinematics; Kinetic energy; Mice; Physiology; Animals; Biomechanical Phenomena; Giant Cells; Heart Rate; Hydrostatic Pressure; Mice; Myocardium;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE
Conference_Location :
Osaka
ISSN :
1557-170X
Type :
conf
DOI :
10.1109/EMBC.2013.6609635
Filename :
6609635
Link To Document :
بازگشت