DocumentCode :
3186437
Title :
Proposal of asymmetric multi-classifier of arrhythmias
Author :
Mora, Luis Alejandro ; Amaya, Jhon Edgar
Author_Institution :
Lab. de Instrumentacion, Control y Automatizacion, Univ. Nac. Exp. del Tachira, San Cristobal, Venezuela
fYear :
2012
fDate :
1-5 Oct. 2012
Firstpage :
1
Lastpage :
7
Abstract :
This paper presents a new methodology for the development of multi-classifiers SVM with One-Againts-One (OAO), which allows each node to use different features or attributes to differentiate each pair of classes, called asymmetric OAO-SVM. We evaluated this method by developing a classification system to identify four types of arrhythmias (Atrial Fibrillation, Atrial Flutter, Supraventricular Tachyarrhythmia and Ventricular Tachycardia) and Normal ECG, using nonlinear characteristics such as Shannon entropy and Lempel-Ziv complexity.This method presents a positive prediction of 90.72% which represent an improve with respect a typical multi-classifier OAO-SVM.
Keywords :
cardiology; information theory; medical computing; support vector machines; Lempel-Ziv complexity; OAO; One-Againts-One; Shannon entropy; arrhythmias; asymmetric multiclassifier proposal; atrial fibrillation atrial flutter supraventricular tachyarrhythmia and ventricular tachycardia; multiclassifiers SVM; nonlinear characteristics; normal ECG; Electrocardiography; Entropy; Laboratories; Silicon; Silicon compounds; Support vector machines; Vectors; Cardiac Arrhythms; Lempel-Ziv complexity; Shannon entropy; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Informatica (CLEI), 2012 XXXVIII Conferencia Latinoamericana En
Conference_Location :
Medellin
Print_ISBN :
978-1-4673-0794-9
Type :
conf
DOI :
10.1109/CLEI.2012.6427169
Filename :
6427169
Link To Document :
بازگشت