DocumentCode :
3188642
Title :
Wide-band Electrical Characterization of printable nano-particle copper conductors
Author :
Mäkinen, Riku ; Sillanpää, Hannu ; Östman, Kauko ; Palukuru, Vamsi ; Pynttäri, Vesa ; Kanerva, Tomi ; Hagberg, Juha ; Lepistö, Toivo ; Jantunen, Heli ; Yang, Mohshi ; Laxton, Peter B. ; Arimura, Hidetoshi ; Rönkkä, Risto
Author_Institution :
Dept. of Electron., Tampere Univ. of Technol., Tampere, Finland
fYear :
2009
fDate :
7-10 Dec. 2009
Firstpage :
2455
Lastpage :
2458
Abstract :
Copper nano-particle ink suitable for printing is a promising substitute for silver- or gold-based inks for consumer electronics applications. However, oxidization must be controlled during the manufacturing and sintering processes. In this work conductors created from a copper nano-particle ink are characterized. In order to mitigate oxidation effects, the ink was formulated in inert atmosphere. Sintering is achieved by exposure to a short light pulse, which, due to the short time scales (ms) and added benefit of photoreduction, can be done in air. Wide-band electrical characterization results up to 20 GHz for copper nano-particle conductors are presented. Structural analysis using scanning-electron microscope (SEM) complements the characterization. Based on high-frequency measurements, wide-band material parameter extraction techniques, and modeling-based analysis of measurement results, the conductivity was found to be of the order of 0.7·107 S/m. All loss mechanisms including impurities deposited within the metal, porosity, surface roughness, and variation in structure geometry are attributed to the conductivity. The electrical performance was found almost comparable to that of silver-based inks. Also the average measured direct-current (dc) conductivity 1.37·107 S/m is similar to that of typical nano-metal conductors.
Keywords :
copper; electrical conductivity; high-frequency effects; ink; nanoparticles; printing; scanning electron microscopy; Cu; SEM; direct-current conductivity; gold-based ink; high-frequency measurements; inert atmosphere; oxidation effect mitigation; printable nano-particle copper conductors; scanning-electron microscope; short light nanoparticle pulse; silver-based nanoparticle ink; sintering; structural analysis; surface porosity; surface roughness; wide-band electrical characterization; wide-band material parameter extraction; Conducting materials; Conductivity measurement; Conductors; Consumer electronics; Copper; Ink; Manufacturing processes; Printing; Scanning electron microscopy; Wideband; Conductors; copper; nano-particle ink; nanotechnology; printable electronics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Microwave Conference, 2009. APMC 2009. Asia Pacific
Conference_Location :
Singapore
Print_ISBN :
978-1-4244-2801-4
Electronic_ISBN :
978-1-4244-2802-1
Type :
conf
DOI :
10.1109/APMC.2009.5385482
Filename :
5385482
Link To Document :
بازگشت