Title :
Dual Fuzzy-Possibilistic Co-clustering for Document Categorization
Author :
Tjhi, William-Chandra ; Chen, Lihui
Abstract :
In this paper, we introduce a new algorithm called Dual Fuzzy-possibilistic Co-clustering (DFPC) for docu- ment categorization. The proposed algorithm offers several advantages. Firstly, the combined fuzzy and possibilistic cluster memberships in DFPC can provide realistic repre- sentation of document clusters. Secondly, as a co-clustering algorithm, DFPC can categorize high-dimensional datasets effectively. Thirdly, the possibilistic clustering element of the algorithm makes it robust to outliers. We detail the for- mulation of DFPC, and empirically demonstrate its effec- tiveness in categorizing benchmark document datasets.
Keywords :
Clustering algorithms; Conferences; Constraint optimization; Context modeling; Data engineering; Data mining; Fuzzy sets; Matrix decomposition; Robustness; TV;
Conference_Titel :
Data Mining Workshops, 2007. ICDM Workshops 2007. Seventh IEEE International Conference on
Conference_Location :
Omaha, NE
Print_ISBN :
978-0-7695-3019-2
Electronic_ISBN :
978-0-7695-3033-8
DOI :
10.1109/ICDMW.2007.80