DocumentCode :
3190696
Title :
Logistic regression modeling for context-based classification
Author :
Brzezinski, Jack R. ; Knafl, George J.
Author_Institution :
Sch. of Comput. Sci., Telecommun. & Inf. Syst., DePaul Univ., Chicago, IL, USA
fYear :
1999
fDate :
1999
Firstpage :
755
Lastpage :
759
Abstract :
We focus on a machine learning approach to the concept/document classification for IR. We apply a logistic regression-based algorithm to three types of classification tasks: binary classification, multiple classification and classification into a hierarchy. At this stage, for our experiments we use a set of 150 topics from the TIPSTER collection. We develop heuristics as to how to build a logistic regression model for high dimensional, sparse data sets. This research describes work in progress
Keywords :
classification; information retrieval; learning (artificial intelligence); statistical analysis; TIPSTER collection; binary classification; concept document classification; context-based classification; experiments; heuristics; hierarchy; information retrieval; logistic regression modeling; machine learning; multiple classification; sparse data sets; Classification algorithms; Computer science; Context modeling; Electronic mail; Information systems; Lifting equipment; Linear regression; Logistics; Machine learning; Machine learning algorithms;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Database and Expert Systems Applications, 1999. Proceedings. Tenth International Workshop on
Conference_Location :
Florence
Print_ISBN :
0-7695-0281-4
Type :
conf
DOI :
10.1109/DEXA.1999.795279
Filename :
795279
Link To Document :
بازگشت