DocumentCode :
3191547
Title :
A nonlinear stochastic model of fatigue crack length for on-line damage sensing
Author :
Ray, Asok ; Tangirala, Sekhar
Author_Institution :
Dept. of Mech. Eng., Pennsylvania State Univ., University Park, PA, USA
Volume :
4
fYear :
1996
fDate :
11-13 Dec 1996
Firstpage :
3676
Abstract :
This paper presents a nonlinear stochastic model of fatigue crack length in metallic materials for damage estimation and life prediction of machinery components. The model structure is built upon on the underlying principle of the Karhunen-Loeve (K-L) expansion. The statistic of the (non-stationary) crack length process is generated without solving the extended Kalman filter equation in the Wiener integral setting or the Kolmogorov forward equation in the Ito integral setting. The model results have been verified with experimental data of time-dependent fatigue crack statistics for 2024-T3 and 7075-T6 aluminum alloys
Keywords :
aluminium alloys; fatigue cracks; fatigue testing; life testing; stochastic processes; 2024-T3 Al alloy; 7075-T6 Al alloy; Al-Cu-Mg; Al-Zn-Mg; Karhunen-Loeve expansion; damage estimation; fatigue crack length; life prediction; machinery components; metallic materials; nonlinear stochastic model; nonstationary crack length process; on-line damage sensing; statistic; time-dependent fatigue crack statistics; Fatigue; Indium tin oxide; Inorganic materials; Integral equations; Life estimation; Machinery; Nonlinear equations; Predictive models; Statistics; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1996., Proceedings of the 35th IEEE Conference on
Conference_Location :
Kobe
ISSN :
0191-2216
Print_ISBN :
0-7803-3590-2
Type :
conf
DOI :
10.1109/CDC.1996.577214
Filename :
577214
Link To Document :
بازگشت