DocumentCode :
3195243
Title :
Visual object recognition using DAISY descriptor
Author :
Zhu, Chao ; Bichot, Charles-Edmond ; Chen, Liming
Author_Institution :
Université de Lyon, CNRS, Ecole Centrale Lyon, LIRIS, UMR5205, F-69134, France
fYear :
2011
fDate :
11-15 July 2011
Firstpage :
1
Lastpage :
6
Abstract :
Visual content description is a key issue for the task of machine-based visual object categorization (VOC). A good visual descriptor should be both discriminative enough and computationally efficient while possessing some properties of robustness to viewpoint changes and lighting condition variations. The recent literature has featured local image descriptors, e.g. SIFT, as the main trend in VOC. However, it is well known that SIFT is computationally expensive, especially when the number of objects/concepts and learning data increase significantly. In this paper, we investigate the DAISY, which is a new fast local descriptor introduced for wide baseline matching problem, in the context of VOC. We carefully evaluate and compare the DAISY descriptor with SIFT both in terms of recognition accuracy and computation complexity on two standard image benchmarks - Caltech 101 and PASCAL VOC 2007. The experimental results show that DAISY outperforms the state-of-the-art SIFT while using shorter descriptor length and operating 3 times faster. When displaying a similar recognition accuracy to SIFT, DAISY can operate 12 times faster.
Keywords :
DAISY; SIFT; Visual object recognition; local image descriptors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multimedia and Expo (ICME), 2011 IEEE International Conference on
Conference_Location :
Barcelona, Spain
ISSN :
1945-7871
Print_ISBN :
978-1-61284-348-3
Electronic_ISBN :
1945-7871
Type :
conf
DOI :
10.1109/ICME.2011.6011957
Filename :
6011957
Link To Document :
بازگشت