Title :
Load Balancing for Dynamic Spectrum Assignment with Local Information for Secondary Users
Author :
Fischer, Simon ; Mähönen, Petri ; Schöngens, Marcel ; Vöcking, Berthold
Author_Institution :
RWTH Aachen Univ., Aachen
Abstract :
In this paper we study an idealized model of load balancing for dynamic spectrum allocation (DSA) for secondary users using only local information. In our model, each agent is assigned to a channel and may reassign its load in a round based fashion. We present a randomized protocol in which the actions of the agents depend purely on some cost measure (e. g., latency, inverse of the throughput, etc.) of the currently chosen channel. Since agents act concurrently, the system is prone to oscillations. We show how this can be avoided guaranteeing convergence towards a state in which every agent sustains at most a certain threshold cost (if such a state exists). We show that the system converges quickly by giving bounds on the convergence time towards approximately balanced states. Our analysis in the fluid limit (where the number of agents approaches infinity) holds for a large class of cost functions. We support our theoretical analysis by simulations to determine the dependence on the number of agents. It turns out that the number of agents affects the convergence time only in a logarithmic fashion. The work shows under quite general assumptions that even an extremely large number of users using several hundreds of (virtual) channels can work in a DSA fashion.
Keywords :
protocols; radio spectrum management; dynamic spectrum assignment; load balancing; randomized protocol; Analytical models; Channel allocation; Cognitive radio; Computer science; Convergence; Cost function; Delay; Load management; Load modeling; Wireless networks;
Conference_Titel :
New Frontiers in Dynamic Spectrum Access Networks, 2008. DySPAN 2008. 3rd IEEE Symposium on
Conference_Location :
Chicago, IL
Print_ISBN :
978-1-4244-2016-2
Electronic_ISBN :
978-1-4244-2017-9
DOI :
10.1109/DYSPAN.2008.38