DocumentCode :
3199787
Title :
A multi-model parameter and state estimation of mechanical systems
Author :
Baruch, Ieroham ; Flores, J.M. ; Martinez, J.C. ; Garrido, Ruben
Author_Institution :
Dept. de Contol Autom., Centro de Investigacion y de Estudios Avanzados, IPN, Mexico City, Mexico
Volume :
2
fYear :
2000
fDate :
2000
Firstpage :
700
Abstract :
A parametric neural model and an identification learning algorithm for systems parameter and state estimation are described. For a complex nonlinear plants identification, a fuzzy-neural multi-model approach, is proposed. The proposed multi-model contains two parametric neural models, which are applied for real-time identification of a nonlinear mechanical system with friction. The simulation and experimental results confirms the multi-model applicability
Keywords :
DC motor drives; compensation; electric machine analysis computing; friction; fuzzy neural nets; nonlinear systems; parameter estimation; state estimation; DC motor drive; complex nonlinear plants identification; friction; fuzzy-neural multi-model approach; identification learning algorithm; mechanical systems; multi-model parameter; nonlinear mechanical system; nonlinear systems; parametric neural model; parametric neural models; state estimation; systems parameter; Control systems; Frequency; Friction; Mechanical systems; Motion control; Motor drives; Neural networks; Pulse modulation; Servomechanisms; State estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Electronics, 2000. ISIE 2000. Proceedings of the 2000 IEEE International Symposium on
Conference_Location :
Cholula, Puebla
Print_ISBN :
0-7803-6606-9
Type :
conf
DOI :
10.1109/ISIE.2000.930383
Filename :
930383
Link To Document :
بازگشت