• DocumentCode
    319983
  • Title

    James-Stein state space filter

  • Author

    Manton, Jonathan H. ; Krishmamurthy, V. ; Poor, H. Vincent

  • Author_Institution
    Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia
  • Volume
    4
  • fYear
    1997
  • fDate
    10-12 Dec 1997
  • Firstpage
    3454
  • Abstract
    In 1961, James and Stein discovered a remarkable estimator which dominates the maximum-likelihood estimate of the mean of a p-variate normal distribution, provided the dimension p is greater than two. This paper, by applying “James-Stein estimation theory”, derives the James-Stein state filter (JSSF), which is a robust version of the Kalman filter. The JSSF is designed for situations where the parameters of the state-space evolution model are not known with any certainty
  • Keywords
    Kalman filters; filtering theory; maximum likelihood estimation; normal distribution; parameter estimation; state estimation; state-space methods; James-Stein estimation theory; James-Stein state space filter; maximum-likelihood estimate; p-variate normal distribution; state-space evolution model; Estimation theory; Filtering theory; Filters; Gaussian distribution; Mathematical model; Maximum likelihood estimation; Robustness; Signal processing; State estimation; State-space methods;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1997., Proceedings of the 36th IEEE Conference on
  • Conference_Location
    San Diego, CA
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-4187-2
  • Type

    conf

  • DOI
    10.1109/CDC.1997.652382
  • Filename
    652382