Title :
Effect of Mg doping on increase in the life with low contact resistance of Ag-Pd alloy switching contacts in silicone vapor environments
Author :
Tamai, Terutaka ; Sato, Akihiro ; Ito, Syuro
Author_Institution :
Electron. Inst., Hyogo Univ. of Teacher Educ., Japan
Abstract :
When silicone vapor which adsorbed on contact surfaces is subjected to high temperature due to electric discharge in the atmosphere, SiO/sub 2/ is formed by chemical decomposition of the adsorbed silicone molecular. When SiO/sub 2/ is formed on contact surfaces and is caught in the interface of contacts, contact failure is caused by an insulation property of SiO/sub 2/. Newly developed contact material of Ag(40wt%)-Pd(60wt%) alloy with a small amount dopant of Mg was applied experimentally to a micro relay. This material shows remarkable improvement of contact resistance property for contaminant oxide film in comparison with usual Ag-Pd contacts. In this study, the contact resistance property for the number of make-break switching operations of the Ag-Pd-Mg alloy was examined by wide range electrical conditions under saturated (1300 ppm) silicone vapor. Obtained contact resistance properties were compared with the Ag-Pd alloy itself and Ag-Pd overlaid with Au(90wt%)-Ag(10wt%) which is used usually. As results, prolonged low contact resistance property of the Ag-Pd-Mg alloy for silicone environment was found. The mechanism of the low contact resistance property was clarified by cleaning effect based on removal of powder products formed from the contact traces.
Keywords :
contact resistance; electrical contacts; magnesium alloys; palladium alloys; relays; silicones; silver alloys; surface contamination; Ag-Pd alloy switching contact; Ag-Pd-Mg; Mg doping; SiO/sub 2/ contamination; chemical decomposition; contact failure; contact resistance; electric discharge; life; micro-relay; silicone vapor environment; surface adsorption; Atmosphere; Chemicals; Contact resistance; Doping; Insulation; Mechanical factors; Microrelays; Silicon alloys; Surface discharges; Temperature;
Conference_Titel :
Electrical Contacts, 1999. Proceedings of the Forty-Fifth IEEE Holm Conference on
Conference_Location :
Pittsburgh, PA, USA
Print_ISBN :
0-7803-5549-0
DOI :
10.1109/HOLM.1999.795925