DocumentCode :
3204427
Title :
Synchronous generator parameters estimation
Author :
Sarem, Yazdan Najafi ; Poshtan, Javad ; Ghomi, Mohamad ; Poshtan, Majid
Author_Institution :
Electr. Eng. Dept., Iran Sci. & Technol. Univ. (IUST), Tehran
fYear :
2007
fDate :
25-28 Nov. 2007
Firstpage :
870
Lastpage :
875
Abstract :
In this work, genetic algorithm and hybrid genetic algorithm are used to estimates synchronous generator parameters using stand-still frequency response (SSFR) data. The case study for this work is a salient pole synchronous generator in a gas power plant. The transfer function model parameters are obtained through curve fitting over the recorded frequency-response data. Finally, the estimated parameters values were compared to nominal values and, the result of this comparison show that, these algorithms have acceptable accuracy for estimation of synchronous generators parameters using SSFR data.
Keywords :
curve fitting; genetic algorithms; parameter estimation; power plants; synchronous generators; transfer functions; curve fitting; gas power plant; genetic algorithm; salient pole synchronous generator; stand-still frequency response; synchronous generator parameters estimation; transfer function model; Circuit testing; Frequency response; Genetic algorithms; Maximum likelihood estimation; Parameter estimation; Power generation; Stators; Synchronous generators; Synchronous machines; Transfer functions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent and Advanced Systems, 2007. ICIAS 2007. International Conference on
Conference_Location :
Kuala Lumpur
Print_ISBN :
978-1-4244-1355-3
Electronic_ISBN :
978-1-4244-1356-0
Type :
conf
DOI :
10.1109/ICIAS.2007.4658511
Filename :
4658511
Link To Document :
بازگشت