DocumentCode :
3204854
Title :
Memory technologies and data recorder design
Author :
Strauss, Karl F.
Author_Institution :
Jet Propulsion Lab., Pasadena, CA
fYear :
2009
fDate :
7-14 March 2009
Firstpage :
1
Lastpage :
18
Abstract :
Missions, both near Earth and deep space, are under consideration that will require data recorder capacities of such magnitude as to be unthinkable just a few years ago. Concepts requiring well over 16,000 GB of storage are being studied. To achieve this capacity via ldquonormal meansrdquo was considered incredible as recently as 2004. This paper is presented in two parts. Part I describes the analysis of data recorder capacities for missions as far back as 35 years and provides a projection of data capacities required 20 years from now based upon missions either nearing launch, or in the planning stage. The paper presents a similar projection of memory device capacities as baselined in the ITRS - the International Technology Roadmap for Semiconductors. Using known Total Ionizing Dose tolerance going back as far as a decade, a projection of total dose tolerance is made for two prime technologies out to the year 2028. Based upon the two prime technologies, the design of a 130 Tb recorder is discussed in Part II. Further, it is noted that, for all the missions and technologies analyzed, the parameters of a recorder - mass, power, volume - remain constant despite ever-increasing capacity requirements.
Keywords :
aerospace instrumentation; data recording; digital storage; data capacities; data recorder design; memory device capacities; memory technologies; total ionizing dose tolerance; Belts; Capacity planning; Earth; History; Moon; Semiconductor device manufacture; Solid state circuits; Space missions; Space technology; Space vehicles;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Aerospace conference, 2009 IEEE
Conference_Location :
Big Sky, MT
Print_ISBN :
978-1-4244-2621-8
Electronic_ISBN :
978-1-4244-2622-5
Type :
conf
DOI :
10.1109/AERO.2009.4839509
Filename :
4839509
Link To Document :
بازگشت