• DocumentCode
    3206589
  • Title

    Long cable deployments during Martian touchdown: Lessons learned

  • Author

    Shafer, Michael W. ; Sell, Steven W.

  • Author_Institution
    Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA
  • fYear
    2009
  • fDate
    7-14 March 2009
  • Firstpage
    1
  • Lastpage
    12
  • Abstract
    The launch of NASA/JPL´s next generation Mars rover is planned for the fall of 2011. The landing scheme chosen for this rover represents a step forward in unmanned payload delivery. The rover will be lowered from a rocket powered descent stage and then placed onto the surface while hanging from three bridles. During this touchdown event, the communication between the rover and descent stage is maintained by an electrical umbilical cable which is deployed in parallel with the structural bridles. During the development of the deployment device for the electrical umbilical, many obstacles were identified and overcome. Many of these challenges were due in large part to the helical nature of the packing geometry of the umbilical cable. And although none of these issues resulted in the failure of the design, they increased both development and assembly time. Many of the issues and some of the benefits of a helical deployment were not immediately apparent during the trade studies carried out during the deployment selection process. Tests were conducted upon completion of the device in order to characterize both the deployment and separation characteristics of the cable. Extraction loads were needed for inputs to touchdown models and separation dynamics were required to assess cable-rover recontact risk. Understanding the pros and cons surrounding the deployment of a helically packed cable would most certainly influence the outcome of future trade studies surrounding the selection of cable deployment options.
  • Keywords
    cables (electric); mobile robots; planetary rovers; telerobotics; Martian touchdown; cable-rover recontact risk; electrical umbilical cable; helical deployment; long cable deployments; next generation Mars rover; unmanned payload delivery; Geometry; Laboratories; Mars; NASA; Propulsion; Rockets; Space technology; Testing; Umbilical cable; Vehicles;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Aerospace conference, 2009 IEEE
  • Conference_Location
    Big Sky, MT
  • Print_ISBN
    978-1-4244-2621-8
  • Electronic_ISBN
    978-1-4244-2622-5
  • Type

    conf

  • DOI
    10.1109/AERO.2009.4839589
  • Filename
    4839589