DocumentCode :
3207468
Title :
Finding natural clusters having minimum description length
Author :
Wallace, Richard S. ; Kanade, Takeo
Author_Institution :
Sch. of Comput. Eng., Carnegie-Mellon Univ., Pittsburgh, PA, USA
Volume :
i
fYear :
1990
fDate :
16-21 Jun 1990
Firstpage :
438
Abstract :
A two-step procedure that finds natural clusters in geometric point data is described. The first step computes a hierarchical cluster tree minimizing an entropy objective function. The second step recursively explores the tree for a level clustering having minimum description length. Together, these two steps find natural clusters without requiring a user to specify threshold parameters or so-called magic numbers. In particular, the method automatically determines the number of clusters in the input data. The first step exploits a new hierarchical clustering procedure called numerical iterative hierarchical clustering (NIHC). The output of NIHC is a cluster tree. The second step in the procedure searches the tree for a minimum-description-length (MDL) level clustering. The MDL formulation, equivalent to maximizing the posterior probability, is suited to the clustering problem because it defines a natural prior distribution
Keywords :
entropy; iterative methods; minimisation; pattern recognition; probability; trees (mathematics); entropy objective function; geometric point data; hierarchical cluster tree; minimum description length; natural clusters; natural prior distribution; numerical iterative hierarchical clustering; pattern recognition; posterior probability; two-step procedure; Aerospace electronics; Aircraft; Clouds; Computer science; Entropy; Humans; Laboratories; TV; Telegraphy; Telephony;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 1990. Proceedings., 10th International Conference on
Conference_Location :
Atlantic City, NJ
Print_ISBN :
0-8186-2062-5
Type :
conf
DOI :
10.1109/ICPR.1990.118142
Filename :
118142
Link To Document :
بازگشت