• DocumentCode
    3208164
  • Title

    Parameter estimation of single-input multiple-output systems using the finite impulse response approximation and gradient search

  • Author

    Yongsong Xiao ; Yanjun Liu

  • Author_Institution
    Key Lab. of Adv. Process Control for Light Ind. (Minist. of Educ.), Jiangnan Univ., Wuxi, China
  • fYear
    2015
  • fDate
    23-25 May 2015
  • Firstpage
    6291
  • Lastpage
    6295
  • Abstract
    This paper considers the parameter estimation problem of a single-input multiple-output (SIMO) system by using some finite impulse response (FIR) models to approximate the fictitious subsystem´s transfer functions. We derive the least squares parameter estimates of the equivalent FIR models with the FIR model orders increasing from available input/output data. Moreover, we use the multi-innovation identification theory to derive a multi-innovation stochastic gradient algorithm for estimating the parameters of the original systems from the estimated FIR model parameters. The proposed algorithm can be extended to other multiple-input multiple-output systems with colored noises.
  • Keywords
    FIR filters; MIMO systems; approximation theory; gradient methods; least squares approximations; parameter estimation; search problems; stochastic processes; transfer functions; FIR model orders; SIMO system; colored noises; finite impulse response approximation; finite impulse response models; gradient search; least squares parameter estimation; multiinnovation identification theory; multiinnovation stochastic gradient algorithm; multiple-input multiple-output systems; parameter estimation problem; single-input multiple-output system; transfer functions; Computational modeling; Finite impulse response filters; Least squares approximations; Mathematical model; Parameter estimation; Signal processing algorithms; FIR models; Multi-innovation Identification Theory; Parameter Estimation; System Identification;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control and Decision Conference (CCDC), 2015 27th Chinese
  • Conference_Location
    Qingdao
  • Print_ISBN
    978-1-4799-7016-2
  • Type

    conf

  • DOI
    10.1109/CCDC.2015.7161947
  • Filename
    7161947