• DocumentCode
    3210596
  • Title

    The Sensitivity Analysis, Optimization and Uncertainty Assessment of the Land Surface Model Parameters

  • Author

    Su, Gaoli ; Liu, Qinhuo ; Deng, Fangping ; Xin, Xiaozhou

  • Author_Institution
    State Key Lab. of Remote Sensing Sci., Chinese Acad. of Sci., Beijing, China
  • Volume
    3
  • fYear
    2010
  • fDate
    11-12 May 2010
  • Firstpage
    950
  • Lastpage
    954
  • Abstract
    In order to improve land surface modeling predictions, the land surface models are generally calibrated against measurements. The study addressed the parameter sensitivity analysis, model calibration, the realistic quantification of parameter uncertainty and its effect on the results of Noah land surface model. The LH-OAT method was applied in the sensitivity analysis for the Noah LSM model parameters. Based on the eight important parameters effect on the land surface upward longwave radiation, the shuffled complex evolution metropolis (SCEM-UA) global optimization algorithms is used to automatically infer the posterior distribution of the model parameters. To overcome the computational burden, the optimization has been implemented using parallel computing. The Noah model prediction using the optimal parameters shows that the simulated upward longwave radiation matched measurements fairly well with an R2 value of 0.9842 and Root Mean Squared Error (RMSE) of 5.42W/m2. Results demonstrate that the SCEM-UA algorithm can efficiently evolve the posterior distribution of the parameters for the complex land surface model.
  • Keywords
    atmospheric radiation; calibration; geophysical techniques; geophysics computing; optimisation; AD 2008 06 11 to 24; LH-OAT method; Noah land surface model; land surface model parameters; land surface upward longwave radiation; model calibration; northwest China; parallel computing; posterior distribution; root mean squared error; sensitivity analysis; shuffled complex evolution metropolis global optimization algorithms; uncertainty assessment; Atmospheric modeling; Calibration; Land surface; Predictive models; Remote sensing; Sensitivity analysis; Soil; Uncertain systems; Uncertainty; Weather forecasting; Noah model; parameter optimization; sensitivity analysis; uncertainty analysis;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Computation Technology and Automation (ICICTA), 2010 International Conference on
  • Conference_Location
    Changsha
  • Print_ISBN
    978-1-4244-7279-6
  • Electronic_ISBN
    978-1-4244-7280-2
  • Type

    conf

  • DOI
    10.1109/ICICTA.2010.299
  • Filename
    5523609