Title :
A two-step method for nonlinear polynomial model identification based on evolutionary optimization
Author :
Cheng, Yu ; Wang, Lan ; Hu, Jinglu
Author_Institution :
Grad. Sch. of Inf., Production & Syst., Waseda Univ., Kitakyushu, Japan
Abstract :
A two-step identification method for nonlinear polynomial model using Evolutionary Algorithm (EA) is proposed in this paper, and the method has the ability to select a parsimonious structure from a very large pool of model terms. In a nonlinear polynomial model, the number of candidate monomial terms increases drastically as the order of polynomial model increases, and it is impossible to obtain the accurate model structure directly even with state-of-art algorithms. The proposed method firstly carries out a pre-screening process to select a reasonable number of important monomial terms based on the importance index. In the next step, EA is applied to determine a set of significant terms to be included in the polynomial model. In this way, the whole identification algorithm is implemented very efficiently. Numerical simulations are carried out to demonstrate the effectiveness of the proposed identification method.
Keywords :
evolutionary computation; identification; polynomials; evolutionary algorithm; evolutionary optimization; importance index; nonlinear polynomial model identification; numerical simulations; parsimonious structure; Costs; Delay; Evolutionary computation; Genetic algorithms; Mathematical model; Numerical simulation; Optimization methods; Polynomials; Production systems; System identification;
Conference_Titel :
Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on
Conference_Location :
Coimbatore
Print_ISBN :
978-1-4244-5053-4
DOI :
10.1109/NABIC.2009.5393428