• DocumentCode
    321340
  • Title

    Small noise asymptotics of nonlinear filters with nonobservable limiting deterministic system

  • Author

    Joannides, Marc ; LeGland, François

  • Author_Institution
    IRISA, Rennes, France
  • Volume
    2
  • fYear
    1997
  • fDate
    10-12 Dec 1997
  • Firstpage
    1663
  • Abstract
    We study the asymptotic behaviour of the Bayesian estimator for a deterministic signal in additive Gaussian white noise, in the case where the set of minima of the Kullback-Leibler information is a submanifold of the parameter space. This problem includes as a special case the study of the asymptotic behaviour of the nonlinear filter, when the state equation is noise-free, and when the limiting deterministic system is nonobservable. We present a practical example where this situation occurs. We give an explicit expression of the limit, as the noise intensity goes to zero, of the posterior probability distribution of the parameter, and we study the rate of convergence
  • Keywords
    Bayes methods; Gaussian noise; convergence; filtering theory; nonlinear filters; parameter estimation; probability; white noise; Bayesian estimator; Kullback-Leibler information minima; additive Gaussian white noise; convergence rate; noise-free state equation; nonlinear filters; nonobservable limiting deterministic system; parameter space submanifold; posterior probability distribution; small noise asymptotics; Additive white noise; Bayesian methods; Electronic mail; Filtering; Gaussian noise; Nonlinear equations; Nonlinear filters; Probability distribution; Symmetric matrices; White noise;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1997., Proceedings of the 36th IEEE Conference on
  • Conference_Location
    San Diego, CA
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-4187-2
  • Type

    conf

  • DOI
    10.1109/CDC.1997.657756
  • Filename
    657756