• DocumentCode
    321342
  • Title

    RLS estimation of input/output models for distributed systems in the presence of noise

  • Author

    Gibson, J.S. ; Lee, G.H. ; Wu, C.-F.

  • Author_Institution
    California Univ., Los Angeles, CA, USA
  • Volume
    2
  • fYear
    1997
  • fDate
    10-12 Dec 1997
  • Firstpage
    1672
  • Abstract
    This paper discusses recursive-least-squares (RLS) estimation of parameters in digital input/output models of linear time-invariant distributed systems. The equivalence between the parameter estimation problem for infinitely long data sequences and a linear-quadratic optimal control problem on a finite interval is used to compute theoretical asymptotic values for the parameters estimated from finite data sequences. Numerical results are given for a sampled-data version of a wave equation
  • Keywords
    distributed parameter systems; least squares approximations; linear quadratic control; multidimensional systems; noise; recursive estimation; sampled data systems; wave equations; distributed parameter systems; infinite dimensional systems; input/output models; linear time-invariant systems; linear-quadratic optimal control; noise; parameter estimation; recursive-least-squares; sampled-data systems; wave equation; Estimation theory; Hilbert space; Lattices; Optimal control; Parameter estimation; Partial differential equations; Resonance light scattering; System identification; Transfer functions; White noise;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1997., Proceedings of the 36th IEEE Conference on
  • Conference_Location
    San Diego, CA
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-4187-2
  • Type

    conf

  • DOI
    10.1109/CDC.1997.657759
  • Filename
    657759