DocumentCode :
321411
Title :
A bias-free least-squares parameter estimator for continuous-time state-space models
Author :
Garnier, H. ; Sibille, P. ; Bastogne, T.
Author_Institution :
CNRS, Univ. Henri Poincare, Vandoeuvre-les-Nancy, France
Volume :
2
fYear :
1997
fDate :
10-12 Dec 1997
Firstpage :
1860
Abstract :
A bias-compensation method for continuous-time MIMO state-space model identification is presented. The Poisson moment functional approach is used to handle the time-derivative problem. The conventional least-squares algorithm, an instrumental variable algorithm and the proposed bias-free algorithm are applied to the parameter estimation of a simulated system under different noise levels via Monte Carlo simulations. The numerical study illustrates the performances of the proposed method
Keywords :
MIMO systems; Monte Carlo methods; continuous time systems; least squares approximations; parameter estimation; state-space methods; Monte Carlo simulations; Poisson moment functional approach; bias-compensation method; bias-free least-squares parameter estimator; continuous-time MIMO state-space model; instrumental variable algorithm; time-derivative problem; Control system analysis; Design engineering; Differential equations; Instruments; MIMO; Noise level; Parameter estimation; State estimation; System analysis and design; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1997., Proceedings of the 36th IEEE Conference on
Conference_Location :
San Diego, CA
ISSN :
0191-2216
Print_ISBN :
0-7803-4187-2
Type :
conf
DOI :
10.1109/CDC.1997.657854
Filename :
657854
Link To Document :
بازگشت