• DocumentCode
    3216004
  • Title

    The effect of different hidden unit number of sparse autoencoder

  • Author

    Qingyang Xu ; Li Zhang

  • Author_Institution
    Sch. of Mech., Electr. & Inf. Eng., Shandong Univ., Weihai, China
  • fYear
    2015
  • fDate
    23-25 May 2015
  • Firstpage
    2464
  • Lastpage
    2467
  • Abstract
    Sparse autoencoder is the fundamental part in some deep architecture. The hidden layer output is the compression of the input data which gives a better representation of the input than the original raw input. However, the determination of hidden unit number is always experiential. In this paper, the different hidden unit number is discussed. The weight of sparse autoencoder will learn the digital number outline of the handwriting instead of pen strokes when the hidden unit number is smaller. The weight can learn the pen strokes of the handwriting when the hidden unit number is larger.
  • Keywords
    backpropagation; data compression; handwriting recognition; image coding; image representation; backpropagation; deep architecture; deep learning; digital number outline; handwriting; hidden layer output; hidden unit number; input data compression; input representation; pen strokes; sparse autoencoder; Accuracy; Backpropagation; Computer architecture; Databases; Neural networks; Unsupervised learning; Visualization; Backpropagation; Different hidden unit number; MNIST database; Sparse autoencoder;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control and Decision Conference (CCDC), 2015 27th Chinese
  • Conference_Location
    Qingdao
  • Print_ISBN
    978-1-4799-7016-2
  • Type

    conf

  • DOI
    10.1109/CCDC.2015.7162335
  • Filename
    7162335