Title :
Convergence of a genetic algorithm for estimating cardiac material properties
Author :
Nair, Arun U. ; Taggart, David G. ; Vetter, Frederick J.
Author_Institution :
Dept. of Mech. Eng., Rhode Island Univ., Kingston, RI, USA
Abstract :
In this paper we present the results of a detailed study of a systematic numerical scheme for estimating material parameters for ventricular myocardium. The numerical scheme combines a real encoded genetic algorithm with nonlinear finite element analysis. The primary objective of this study was to determine optimal population size for the genetic algorithm so as obtain rapid convergence to actual material parameter values. Optimal parameter settings for the genetic algorithm and interdependencies of material parameters were determined through multiple optimization runs.
Keywords :
biomechanics; cardiovascular system; finite element analysis; genetic algorithms; muscle; cardiac material properties estimation; genetic algorithm convergence; material interdependencies; nonlinear finite element analysis; systematic numerical scheme; ventricular myocardium; Algorithm design and analysis; Biological cells; Capacitive sensors; Convergence; Finite element methods; Genetic algorithms; Material properties; Myocardium; Slabs; Stress;
Conference_Titel :
Bioengineering Conference, 2005. Proceedings of the IEEE 31st Annual Northeast
Print_ISBN :
0-7803-9105-5
Electronic_ISBN :
0-7803-9106-3
DOI :
10.1109/NEBC.2005.1431970