DocumentCode :
3220597
Title :
Analysis of brain scan images using genetic algorithms
Author :
Hogans, John Ed, IV ; Homaifar, Abdollah
Author_Institution :
North Carolina A&T State Univ., Greensboro, NC, USA
fYear :
1993
fDate :
7-9 Mar 1993
Firstpage :
218
Lastpage :
222
Abstract :
Genetic algorithms are used to automatically quantify the three types of brain tissue: cerebrospinal fluid (CSF), white matter, and gray matter. The quantification technique utilizes a statistical model of the noise and partial volume effect, and fits a derived probability density function to that of the data. The results are compared with those obtained by a tree annealing algorithm
Keywords :
biomedical NMR; brain models; genetic algorithms; medical image processing; CSF; brain scan images; cerebrospinal fluid; genetic algorithms; gray matter; noise; partial volume effect; probability density function; quantification; statistical model; tree annealing algorithm; white matter; Algorithm design and analysis; Biological cells; Brain; Genetic algorithms; Image analysis; Magnetic analysis; Magnetic resonance imaging; Optimization methods; Pixel; Probability density function;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
System Theory, 1993. Proceedings SSST '93., Twenty-Fifth Southeastern Symposium on
Conference_Location :
Tuscaloosa, AL
ISSN :
0094-2898
Print_ISBN :
0-8186-3560-6
Type :
conf
DOI :
10.1109/SSST.1993.522774
Filename :
522774
Link To Document :
بازگشت