DocumentCode :
3221233
Title :
A printed circuit board inspection system using artificial neural network
Author :
Han, Chingping ; Mazouz, Kadel ; Saravanan, N.
Author_Institution :
Dept. of Mech. Eng., Florida Atlantic Univ., Boca Raton, FL, USA
fYear :
1993
fDate :
7-9 Mar 1993
Firstpage :
238
Lastpage :
242
Abstract :
The network is trained to distinguish between correct and faulty PCB assembly boards. The setup consists of a video camera, a robot, and a machine vision system along with an IBM PC. The backpropagation algorithm is used to train the network
Keywords :
IBM computers; automatic optical inspection; backpropagation; microcomputer applications; neural nets; printed circuit testing; robot vision; video cameras; IBM PC; artificial neural network; assembly boards; backpropagation algorithm; machine vision system; printed circuit board inspection system; robot; video camera; Artificial intelligence; Artificial neural networks; Computer vision; Fault tolerance; Inspection; Machine vision; Manufacturing processes; Neural networks; Printed circuits; Robot vision systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
System Theory, 1993. Proceedings SSST '93., Twenty-Fifth Southeastern Symposium on
Conference_Location :
Tuscaloosa, AL
ISSN :
0094-2898
Print_ISBN :
0-8186-3560-6
Type :
conf
DOI :
10.1109/SSST.1993.522778
Filename :
522778
Link To Document :
بازگشت