DocumentCode :
3221561
Title :
Applications of mechanical parameter identification with support vector machine for AC motor control system
Author :
Cho, Kyung-Rae ; Seok, Jul-Ki ; Lee, Dong-Choon
Author_Institution :
Electr. Eng. & Comput. Sci., Yeungnam Univ., Kyungbuk, South Korea
Volume :
3
fYear :
2004
fDate :
2-6 Nov. 2004
Firstpage :
2110
Abstract :
The overall performance of AC servo system is greatly affected by the uncertainties of unpredictable mechanical parameter variations and external load disturbances. Therefore, to compensate this problem, it is necessary to know different parameters and load disturbances subjected to position/speed control. This paper proposes an online identification method of mechanical parameters/load disturbances for AC servo system using support vector regression (SVR). The proposed methodology advocates analytic parameter regression directly from the training data, rather than adaptive controller and observer approaches commonly used in motion control applications. The experimental results demonstrate that the proposed SVR algorithm is appropriate for control of unknown servo systems even with large measurement noise.
Keywords :
AC motors; adaptive control; angular velocity control; electric machine analysis computing; machine vector control; motion control; observers; parameter estimation; position control; regression analysis; servomotors; support vector machines; AC motor control system; AC servo system; adaptive controller; load disturbances; measurement noise; mechanical parameter identification; motion control; observer; online identification method; position-speed control; support vector machine; support vector regression; AC motors; Control systems; Motion control; Parameter estimation; Programmable control; Servomechanisms; Support vector machines; Training data; Uncertainty; Velocity control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE
Print_ISBN :
0-7803-8730-9
Type :
conf
DOI :
10.1109/IECON.2004.1432122
Filename :
1432122
Link To Document :
بازگشت