Title :
Control of Four-Wheel-Steering Vehicle Using GA Fuzzy Neural Network
Author :
Wu, Shijing ; Zhu, Enyong ; Qin, Ming ; Ren, Hui ; Lei, Zhipeng
Author_Institution :
Sch. of Power & Mech. Eng., Wuhan Univ., Wuhan
Abstract :
In order to improve the handling and stability of four-wheel-steering (4 WS) vehicle, a new 4 WS intelligent control system with genetic algorithm (GA) fuzzy neural network (FNN) was put forward. According to the tire cubic formula, a vehicle nonlinear dynamics model was built. Then a vehicle model based on back-propagation (BP) network was identified from the vehicle dynamics. Next a fuzzy neural network controller was designed. Speed, steering angle of front wheel and lateral acceleration were taken as its input variables and steering angle of rear wheel was taken as its output variable. At last GA was used to optimize the fuzzy neural network controller. The results of computer simulation demonstrate that the 4 WS intelligent control system with GA fuzzy neural network can markedly reduce the side slip angle and the yaw rate compared with linear 4 WS control law and 2 WS control law, the entire control system is robust, and the optimization by GA improves the control performance of controller and the design efficiency.
Keywords :
automobiles; backpropagation; control system synthesis; fuzzy control; genetic algorithms; neurocontrollers; nonlinear control systems; stability; steering systems; vehicle dynamics; automobile; back-propagation; four-wheel-steering vehicle control; fuzzy neural network controller design; genetic algorithm; intelligent control; stability; tire cubic formula; vehicle nonlinear dynamics model; Acceleration; Fuzzy control; Fuzzy neural networks; Genetic algorithms; Intelligent control; Nonlinear dynamical systems; Stability; Tires; Vehicle dynamics; Wheels; four-wheel-steering; fuzzy control; genetic algorithm; neural network; vehicle;
Conference_Titel :
Intelligent Computation Technology and Automation (ICICTA), 2008 International Conference on
Conference_Location :
Hunan
Print_ISBN :
978-0-7695-3357-5
DOI :
10.1109/ICICTA.2008.237