Title :
Estimation of Distribution Algorithm sampling under Gaussian and Cauchy distribution in continuous domain
Author :
Luo, Na ; Qian, Feng
Author_Institution :
Key Lab. of Adv. Control & Optimization for Chem. Processes, East China Univ. of Sci. & Technol., Shanghai, China
Abstract :
Estimation of Distribution Algorithm is a new population based evolutionary optimization method and it generates new population from probability distribution model. Like most evolutionary algorithms, it is easy to trap into local optimums. In order to avoid this shortcoming, Gaussian and Cauchy probability density function are mixed as probability distribution model. For continuous problems, a new estimation of distribution algorithm sampling under the mixed model is presented. New individuals are generated not only from Gaussian distribution but sometimes from Cauchy distribution in order to keep diversity. The selection strategy of Gaussian and Cauchy distribution are also discussed. The new algorithm is tested on five benchmark functions and results are compared with basic and estimation of distribution algorithm with Cauchy mutation.
Keywords :
Gaussian distribution; demography; evolutionary computation; Cauchy distribution; Cauchy mutation; Cauchy probability density function; Gaussian distribution; Gaussian probability density function; distribution algorithm; evolutionary optimization; probability distribution; Automatic control; Chemical processes; Control engineering education; Electronic design automation and methodology; Evolutionary computation; Gaussian distribution; Genetic mutations; Laboratories; Probability distribution; Sampling methods;
Conference_Titel :
Control and Automation (ICCA), 2010 8th IEEE International Conference on
Conference_Location :
Xiamen
Print_ISBN :
978-1-4244-5195-1
Electronic_ISBN :
1948-3449
DOI :
10.1109/ICCA.2010.5524432