DocumentCode :
3223284
Title :
Maximum likelihood parameter estimation of multiple chirp signals by a new Markov chain Monte Carlo approach
Author :
Lin, Yan ; Peng, Yingning ; Wang, Xiutan
Author_Institution :
Dept. of Electron. Eng., Tsinghua Univ., Beijing, China
fYear :
2004
fDate :
26-29 April 2004
Firstpage :
559
Lastpage :
562
Abstract :
In this paper, a novel method for estimating the parameters of multiple chirp signals in additive Gaussian white noise is proposed. The method combines a global optimization theorem with a new Markov chain Monte Carlo algorithm, called the simulated annealing one-variable-at-a-time random walk Metropolis-Hastings algorithm. It is a computationally modest implementation of maximum likelihood estimation and has no error propagation effect. Simulation results show that the proposed method can give good estimates for the unknown parameters, even when the parameters of the individual chirp signals are closely spaced and the Cramer-Rao lower bound can be attained even at low signal-to-noise ratio.
Keywords :
AWGN; Markov processes; Monte Carlo methods; chirp modulation; maximum likelihood estimation; signal processing; simulated annealing; Cramer-Rao lower bound; Markov chain Monte Carlo algorithm; additive Gaussian white noise; error propagation effect; global optimization theorem; maximum likelihood estimation; maximum likelihood parameter estimation; multiple chirp signals; one-variable-at-a-time random walk Metropolis-Hastings algorithm; signal-to-noise ratio; simulated annealing; Additive white noise; Chirp; Computational modeling; Maximum likelihood estimation; Monte Carlo methods; Optimization methods; Parameter estimation; Signal to noise ratio; Simulated annealing; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Radar Conference, 2004. Proceedings of the IEEE
Print_ISBN :
0-7803-8234-X
Type :
conf
DOI :
10.1109/NRC.2004.1316487
Filename :
1316487
Link To Document :
بازگشت