DocumentCode
3225473
Title
A novel adaptive intrusion detection approach based on comparison of neural networks and idiotypic networks
Author
Linhui Zhao ; Fang, Xin ; Dai, Yaping
Author_Institution
Sch. of Mechatron., Beijing Union Univ., Beijing, China
fYear
2009
fDate
20-21 July 2009
Firstpage
203
Lastpage
208
Abstract
Although neural networks and idiotypic networks are similar in functions, they are different in many aspects. This paper compares them in topological structures, initializing ways, learning methods, et al. Based on the comparison and combined with pattern recognition technology, this paper proposes a novel adaptive intrusion detection approach using idiotypic networks. Additionally, the approach is compared with detection approach using neural networks. Idiotypic networks´ memory and learning abilities, especially their dynamic adjustable ability enable them superior to neural networks in the application for intrusion detection. This paper presents a new detection algorithm according to immune response principles and a new multimutation pattern idiotypic network model to implement the detection algorithm. By utilizing some immune principles, the proposed approach can overcome problems existing in detection approaches based on neural networks. Firstly, idiotypic networks can adjust automatically with presenting of antigens, making new features fused into networks continuously. Thus, this approach needs not to be updated periodically. Secondly, the trained network model can still be changed to learn new features of attacks, so the performance of detecting unknown attacks is improved. Thirdly, clone expansion of antibodies is suppressed by idiotypic effects, thus false positive rate is decreased. Experiments are carried out on Fisher Iris dataset and KDD-CUP-99 database to verify the performance of this adaptive detection approach. Compared with the detection approach based on a multilayer perception network, the false positive rate is decreased and the detection accuracy of unknown attacks is increased.
Keywords
multilayer perceptrons; security of data; Fisher Iris dataset; KDD-CUP-99 database; adaptive detection approach; adaptive intrusion detection approach; antigens; idiotypic networks; initializing ways; learning methods; multilayer perception network; neural networks; pattern recognition technology; topological structures; Computer networks; Detection algorithms; Detectors; Intrusion detection; Iris; Learning systems; Mechatronics; Multi-layer neural network; Neural networks; Pattern recognition; idiotypic networks; intrusion detection; neural networks; pattern recognition;
fLanguage
English
Publisher
ieee
Conference_Titel
Nonlinear Dynamics and Synchronization, 2009. INDS '09. 2nd International Workshop on
Conference_Location
Klagenfurt
ISSN
1866-7791
Print_ISBN
978-1-4244-3844-0
Type
conf
DOI
10.1109/INDS.2009.5228006
Filename
5228006
Link To Document