DocumentCode :
3226398
Title :
Data Compression and Linear Modeling
Author :
Beheshti, Soosan
Author_Institution :
Ryerson Univ., Toronto
fYear :
2008
fDate :
25-27 March 2008
Firstpage :
507
Lastpage :
507
Abstract :
This paper addresses problem of data compression when partial information on data structure is available and optimum code is known to be among a set of given parametric codes. The goal of the proposed method is to choose the optimum parametric code by using an observed finite length data that is generated by an unknown parameter. We provide a new approach that compares estimates of different order among the given parametric codes and chooses the one with minimum probabilistic worst-case average codelength (ACL).
Keywords :
codes; data compression; data structures; average codelength; data compression; data structure; linear modeling; optimum code; parametric codes; Data compression; Data structures; Maximum likelihood estimation; Parameter estimation; Probability; Random processes; Random variables; Samarium; Statistics; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Compression Conference, 2008. DCC 2008
Conference_Location :
Snowbird, UT
ISSN :
1068-0314
Print_ISBN :
978-0-7695-3121-2
Type :
conf
DOI :
10.1109/DCC.2008.66
Filename :
4483334
Link To Document :
بازگشت