DocumentCode :
322662
Title :
Design of stable and robust fuzzy controller for uncertain nonlinear systems: Lyapunov´s function approach
Author :
Lam, H.K. ; Leung, F.H.F. ; Tam, P.K.S.
Author_Institution :
Dept. of Electron. Eng., Hong Kong Polytech., Hung Hom, Hong Kong
Volume :
3
fYear :
1997
fDate :
9-14 Nov 1997
Firstpage :
1046
Abstract :
This paper presents the analysis of stability and robustness of an uncertain nonlinear fuzzy system. To proceed with the analysis, the uncertain nonlinear plant is represented by a fuzzy model that includes parameter uncertainty information. Then, three design approaches will be introduced to close the feedback loop. By using the Lyapunov´s stability theory, the closed loop uncertain fuzzy control system is shown to be stable if there exists a positive definite solution for an algebraic Riccati equation (ARE) derived. An example on stabilizing an uncertain nonlinear mass-spring-damper system is given to illustrate the stabilizability and robustness properties of the proposed fuzzy controller
Keywords :
Lyapunov methods; Riccati equations; closed loop systems; control system synthesis; feedback; fuzzy control; nonlinear control systems; robust control; uncertain systems; Lyapunov´s function approach; Lyapunov´s stability theory; algebraic Riccati equation; closed loop uncertain fuzzy control system; feedback loop; mass-spring-damper system; parameter uncertainty information; robust fuzzy controller; robustness properties; stable controller; uncertain nonlinear systems; Feedback loop; Fuzzy control; Fuzzy systems; Information analysis; Lyapunov method; Riccati equations; Robust control; Robust stability; Stability analysis; Uncertain systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Electronics, Control and Instrumentation, 1997. IECON 97. 23rd International Conference on
Conference_Location :
New Orleans, LA
Print_ISBN :
0-7803-3932-0
Type :
conf
DOI :
10.1109/IECON.1997.668424
Filename :
668424
Link To Document :
بازگشت