Title :
Investigation of approaches to reduce truncation of attenuation maps with simultaneous transmission and emission SPECT imaging
Author :
Narayanan, Manoj V. ; King, Michael A. ; Pan, Tin-Su ; Dalberg, Seth T.
Author_Institution :
Dept. of Nucl. Med., Massachusetts Univ. Med. Center, Worcester, MA, USA
Abstract :
The limited field of view (FOV) associated with fan beam collimators can lead to truncation of reconstructed attenuation maps in transmission imaging. The authors investigated through simulations, a few simple approaches for reducing the truncation of attenuation maps with simultaneous transmission-emission SPECT imaging. These include: (1) the use of longer focal length collimators (65 vs. 104 cm); (2) using a 4 cm lateral table offset to bring the heart closer to the center of the fully sampled region (FSR); (3) using body contouring orbits instead of circular orbits to bring the camera closer to the body; (4) using a larger camera to increase the FSR; and (5) use of asymmetric fan beam collimators to enlarge the FSR. The three dimensional mathematical cardiac torso phantom was used to simulate the activity and attenuation maps. Simulations were carried out for two configurations with the heart located within as well as extending beyond the edge of the FSR. As expected, results indicate that employing a larger camera effectively removes the truncation seen in normal sized patients. With a standard camera size of 40 cm, the asymmetric fan beam collimator gives results comparable to that obtained using a 104 cm symmetric fan beam collimator. Body contour orbits generally provided better cardiac uniformity at the shorter focal lengths than a circular orbit. If any portion of the heart walls lie beyond the FSR for a 65 cm focal length collimator, a judicious combination of using longer focal length collimators along with table offset greatly reduces the amount of truncation in the attenuation maps, improving cardiac uniformity
Keywords :
cardiology; gamma-ray absorption; medical image processing; single photon emission computed tomography; 104 cm; 4 cm; 40 cm; 65 cm; asymmetric fan beam collimators; attenuation maps truncation reduction; body contouring orbits; cardiac uniformity; fan beam collimators; heart; lateral table offset; medical diagnostic imaging; nuclear medicine; reconstructed attenuation maps; simultaneous transmission/emission SPECT imaging; three dimensional mathematical cardiac torso phantom; Attenuation; Biomedical imaging; Cameras; Collimators; Head; Heart; Image reconstruction; Imaging phantoms; Optical imaging; Orbits;
Conference_Titel :
Nuclear Science Symposium, 1997. IEEE
Conference_Location :
Albuquerque, NM
Print_ISBN :
0-7803-4258-5
DOI :
10.1109/NSSMIC.1997.670536