DocumentCode :
3229434
Title :
Recent advances in blood flow vector velocity imaging
Author :
Jensen, Jørgen Arendt ; Nikolov, Svetoslav Ivanov ; Udesen, Jesper ; Munk, Peter ; Hansen, Kristoffer Lindskov ; Pedersen, Mads Møller ; Hansen, Peter Møller ; Nielsen, Michael Bachmann ; Oddershede, Niels ; Kortbek, Jacob ; Pihl, Michael Johannes ; Li, Y
Author_Institution :
Dept. of Elec. Eng., Tech. Univ. of Denmark, Lyngby, Denmark
fYear :
2011
fDate :
18-21 Oct. 2011
Firstpage :
262
Lastpage :
271
Abstract :
A number of methods for ultrasound vector velocity imaging are presented in the paper. The transverse oscillation (TO) method can estimate the velocity transverse to the ultrasound beam by introducing a lateral oscillation in the received ultrasound field. The approach has been thoroughly investigated using both simulations, flow rig measurements, and in-vivo validation against MR scans. The TO method obtains a relative accuracy of 10% for a fully transverse flow in both simulations and flow rig experiments. In-vivo studies performed on 11 healthy volunteers comparing the TO method with magnetic resonance phase contrast angiography (MRA) revealed a correlation between the stroke volume estimated by TO and MRA of 0.91 (p<;0.01) with an equation for the line of regression given as: MRA = 1.1 · TO-0.4 ml. Several clinical examples of complex flow in e.g. bifurcations and around valves have been acquired using a commercial implementation of the method (BK Medical ProFocus Ultraview scanner). A range of other methods are also presented. This includes synthetic aperture imaging using either spherical or plane waves with velocity estimation performed with directional beamforming or speckle tracking. The key advantages of these techniques are very fast imaging that can attain an order of magnitude higher precision than conventional methods. SA flow imaging was implemented on the experimental scanner RASMUS using an 8-emission spherical emission sequence and reception of 64 channels on a BK Medical 8804 transducer. This resulted in a relative standard deviation of 1.2% for a fully transverse flow. Plane wave imaging was also implemented on the RASMUS scanner and a 100 Hz frame rate was attained. Several vector velocity image sequences of complex flow were acquired, which demonstrates the benefits of fast vector flow imaging. A method for extending the 2D TO method to 3D vector velocity estimation is presented and the implications for future vector velocity imagi- g is indicated.
Keywords :
bifurcation; biomedical MRI; biomedical transducers; biomedical ultrasonics; haemodynamics; image sequences; medical image processing; regression analysis; ultrasonic transducers; 2D vector velocity estimation; 3D vector velocity estimation; 8-emission spherical emission sequence; BK medical 8804 transducer; MR scans; RASMUS scanner; bifurcations; blood flow vector velocity imaging; complex flow; directional beamforming; fast vector flow imaging; flow rig experiments; flow rig measurements; frequency 100 Hz; fully transverse flow; in-vivo validation; lateral oscillation; magnetic resonance phase contrast angiography; plane wave imaging; plane waves; relative standard deviation; speckle tracking; spherical waves; stroke volume estimation; synthetic aperture imaging; transverse oscillation method; ultrasound beam; ultrasound vector velocity imaging; vector velocity image sequences; velocity estimation; Apertures; Estimation; Image color analysis; Imaging; Oscillators; Ultrasonic imaging; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Ultrasonics Symposium (IUS), 2011 IEEE International
Conference_Location :
Orlando, FL
ISSN :
1948-5719
Print_ISBN :
978-1-4577-1253-1
Type :
conf
DOI :
10.1109/ULTSYM.2011.0064
Filename :
6293382
Link To Document :
بازگشت