DocumentCode :
3230841
Title :
Analysis of fractional fourier transform for ultrasonic NDE Applications
Author :
Lu, Yufeng ; Oruklu, Erdal ; Saniie, Jafar
Author_Institution :
Dept. of Electr. & Comput. Eng., Bradley Univ., Peoria, IL, USA
fYear :
2011
fDate :
18-21 Oct. 2011
Firstpage :
512
Lastpage :
515
Abstract :
In this study, a Fractional Fourier transform-based signal decomposition (FrFT-SD) algorithm is utilized to analyze ultrasonic signals for NDE applications. FrFT, as a transform tool, enables signal decomposition by rotating the signal with an optimal transform order. The search of optimal transform order is conducted by searching the highest kurtosis value of the signal in the transformed domain. Simulation study reveals the relationship among the kurtosis, the transform order of FrFT, and the chirp rate parameter. Furthermore, parameter estimation is applied to the decomposed components (i.e., chirplets) for echo characterization. Simulations and experimental results show that FrFT-SD not only reconstructs signal successfully, but also estimates parameters accurately. Therefore, FrFT-SD could be an effective tool for analysis of ultrasonic signals.
Keywords :
Fourier transforms; acoustic signal processing; echo; parameter estimation; signal reconstruction; ultrasonic waves; FrFT-SD algorithm; chirp rate parameter; chirplets; echo characterization; fractional Fourier transform; highest kurtosis value; optimal transform order; parameter estimation; signal decomposition algorithm; signal reconstruction; ultrasonic NDE applications; ultrasonic signals; Acoustics; Chirp; Fourier transforms; Signal processing algorithms; Signal resolution; Time frequency analysis; Fractional Fourier transform (FrFT); kurtosis; signal decomposition; ultrasonic NDE;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Ultrasonics Symposium (IUS), 2011 IEEE International
Conference_Location :
Orlando, FL
ISSN :
1948-5719
Print_ISBN :
978-1-4577-1253-1
Type :
conf
DOI :
10.1109/ULTSYM.2011.0123
Filename :
6293456
Link To Document :
بازگشت