DocumentCode :
3235860
Title :
Learning a coordinate transformation for a human visual feedback controller based on disturbance noise and the feedback error signal
Author :
Oyama, Eimei ; Chong, Nak Young ; Agah, Arvin ; Maeda, Taro ; Tachi, Susumu ; MacDorman, Karl F.
Author_Institution :
Nat. Inst. of Adv. Ind. Sci. & Technol., Ibaraki, Japan
Volume :
4
fYear :
2001
fDate :
2001
Firstpage :
4186
Abstract :
The speed, accuracy, and adaptability of human movement depends on the brain performing an inverse kinematics transformation-that is, a transformation from visual to joint angle coordinates-based on learning from experience. In human motion control, it is important to learn a feedback controller for the hand position error in the human inverse kinematics solver. This paper proposes a novel model that uses disturbance noise and the feedback error signal to learn coordinate transformations of the human visual feedback controller. The proposed model redresses drawbacks in current models because it does not rely on complex signal switching, which does not seem neurophysiologically plausible. Numerical simulations show the effectiveness of the model.
Keywords :
biocontrol; biomechanics; feedback; kinematics; learning (artificial intelligence); neurophysiology; noise; visual perception; coordinate transformation learning; disturbance noise; feedback controller; feedback error signal; hand position error; human inverse kinematics solver; human motion control; human movement; human visual feedback controller; inverse kinematics transformation; joint angle coordinates; neurophysiology; visual coordinates; Acceleration; Adaptive control; Biological system modeling; Error correction; Feedback; Fingers; Humans; Inverse problems; Kinematics; Thumb;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on
ISSN :
1050-4729
Print_ISBN :
0-7803-6576-3
Type :
conf
DOI :
10.1109/ROBOT.2001.933272
Filename :
933272
Link To Document :
بازگشت