DocumentCode :
3235981
Title :
Minimax rates of convergence for high-dimensional regression under ℓq-ball sparsity
Author :
Raskutti, Garvesh ; Wainwright, Martin J. ; Bin Yu
Author_Institution :
Dept. of Stat., UC Berkeley, Berkeley, CA, USA
fYear :
2009
fDate :
Sept. 30 2009-Oct. 2 2009
Firstpage :
251
Lastpage :
257
Abstract :
Consider the standard linear regression model y = Xß* + w, where y ¿ Rn is an observation vector, X ¿ Rn×d is a measurement matrix, ß* ¿ Rd is the unknown regression vector, and w ~ N (0, ¿2 I) is additive Gaussian noise. This paper determines sharp minimax rates of convergence for estimation of ß* in ¿2 norm, assuming that ß* belongs to a weak ¿b-ball Bq(Rq) for some q ¿ [0, 1]. We show that under suitable regularity conditions on the design matrix X, the minimax error in squared ¿2-norm scales as Rq((log d)/n)1 -q/2. In addition, we provide lower bounds on rates of convergence for general ¿p norm (for all p ¿ [1, + ¿], p ¿ q). Our proofs of the lower bounds are information-theoretic in nature, based on Fano´s inequality and results on the metric entropy of the balls Bq(Rq). Matching upper bounds are derived by direct analysis of the solution to an optimization algorithm over Bq(Rq). We prove that the conditions on X required by optimal algorithms are satisfied with high probability by broad classes of non-i.i.d. Gaussian random matrices, for which RIP or other sparse eigenvalue conditions are violated. For q = 0, ¿1-based methods (Lasso and Dantzig selector) achieve the minimax optimal rates in ¿2 error, but require stronger regularity conditions on the design than the non-convex optimization algorithm used to determine the minimax upper bounds.
Keywords :
Gaussian noise; convergence; eigenvalues and eigenfunctions; information theory; matrix algebra; minimax techniques; probability; random processes; regression analysis; vectors; Dantzig selector; Lasso selector; RIP; additive Gaussian noise; convergence minimax rates; design matrix; high-dimensional regression; information-theoretic; non-i.i.d. Gaussian random matrices; optimization algorithm; probability; regression vector; sparse eigenvalue conditions; standard linear regression model; ¿q-ball sparsity; Additive noise; Algorithm design and analysis; Convergence; Gaussian noise; Linear regression; Measurement standards; Minimax techniques; Noise measurement; Upper bound; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communication, Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on
Conference_Location :
Monticello, IL
Print_ISBN :
978-1-4244-5870-7
Type :
conf
DOI :
10.1109/ALLERTON.2009.5394804
Filename :
5394804
Link To Document :
بازگشت