Title :
A restricted isometry property for structurally-subsampled unitary matrices
Author :
Bajwa, Waheed U. ; Sayeed, Akbar M. ; Nowak, Robert
Author_Institution :
Program in Appl. & Comput. Math., Princeton Univ., Princeton, NJ, USA
fDate :
Sept. 30 2009-Oct. 2 2009
Abstract :
Subsampled (or partial) Fourier matrices were originally introduced in the compressive sensing literature by Candes et al. Later, in papers by Candes and Tao and Rudelson and Vershynin, it was shown that (random) subsampling of the rows of many other classes of unitary matrices also yield effective sensing matrices. The key requirement is that the rows of U, the unitary matrix, must be highly incoherent with the basis in which the signal is sparse. In this paper, we consider acquisition systems that - despite sensing sparse signals in an incoherent domain - cannot randomly subsample rows from U. We consider a general class of systems in which the sensing matrix corresponds to subsampling of the rows of matrices of the form ¿ = RU (instead of U), where R is typically a low-rank matrix whose structure reflects the physical/technological constraints of the acquisition system. We use the term ¿structurally-subsampled unitary matrices¿ to describe such sensing matrices. We investigate the restricted isometry property of a particular class of structurally-subsampled unitary matrices that arise naturally in application areas such as multiple-antenna channel estimation and sub-nyquist sampling. In addition, we discuss an immediate application of this work in the area of wireless channel estimation, where the main results of this paper can be applied to the estimation of multiple-antenna orthogonal frequency division multiplexing channels that have sparse impulse responses.
Keywords :
Fourier analysis; OFDM modulation; channel estimation; matrix algebra; signal sampling; acquisition systems; compressive sensing; multiple antenna orthogonal frequency division multiplexing channel; partial Fourier matrix; restricted isometry property; sparse impulse response; structurally subsampled unitary matrix; wireless channel estimation; Area measurement; Channel estimation; Frequency estimation; Mathematics; OFDM; Reliability theory; Sampling methods; Signal processing; Sparse matrices; Wireless sensor networks;
Conference_Titel :
Communication, Control, and Computing, 2009. Allerton 2009. 47th Annual Allerton Conference on
Conference_Location :
Monticello, IL
Print_ISBN :
978-1-4244-5870-7
DOI :
10.1109/ALLERTON.2009.5394883