DocumentCode :
3238839
Title :
Partially-independent component analysis for tissue heterogeneity correction in microarray gene expression analysis
Author :
Yue Wang ; Zhang, Junying ; Khan, Javed ; Clarke, Robert ; Gu, Zhiping
Author_Institution :
Dept. of Electr. & Comput. Eng., Virginia Polytech. Inst. & State Univ., Alexandria, VA, USA
fYear :
2003
fDate :
17-19 Sept. 2003
Firstpage :
23
Lastpage :
32
Abstract :
Gene microarray technologies provide powerful tools for the large scale analysis of gene expression in cancer research. Clinical applications often aim to facilitate a molecular classification of cancers based on discriminatory genes associated with different clinical stages or outcomes. However, gene expression profiles often represent a composite of more than one distinct source due to tissue heterogeneity, and could result in extracting signatures reflecting the proportion of stromal contamination in the sample, rather than underlying tumor biology. We therefore wish to introduce a computational approach, which allows for a blind decomposition of gene expression profiles from mixed cell populations. The algorithm is based on a linear latent variable model, whose parameters are estimated using partially-independent component analysis, supported by a subset of differentially-expressed genes. We demonstrate the principle of the approach on the data sets derived from mixed cell lines of small round blue cell tumors. Because accurate source separation can be achieved blindly and numerically, we anticipate that computational correction of tissue heterogeneity would be useful in a wide variety of gene microarray studies.
Keywords :
biology computing; blind source separation; cancer; cellular biophysics; genetics; independent component analysis; molecular biophysics; parameter estimation; tumours; blue cell tumors; cancer research; independent component analysis; microarray gene expression analysis; mixed cell lines; molecular classification; stromal contamination; tissue heterogeneity correction; Biological system modeling; Biological tissues; Biology computing; Cancer; Cells (biology); Contamination; Gene expression; Large-scale systems; Neoplasms; Parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks for Signal Processing, 2003. NNSP'03. 2003 IEEE 13th Workshop on
ISSN :
1089-3555
Print_ISBN :
0-7803-8177-7
Type :
conf
DOI :
10.1109/NNSP.2003.1318001
Filename :
1318001
Link To Document :
بازگشت