Title :
Gradient methods for identification of distributed parameter systems
Author :
Brewer, Dennis W.
Author_Institution :
Dept. of Math. Sci., Arkansas Univ., Fayetteville, AR, USA
Abstract :
Parameter-dependence properties are developed in the context of a linear abstract Cauchy problem governed by a parameter-dependent operator. Of particular interest are problems in which the parameter induces an unbounded perturbation of the evolution operator. Conditions are stated under which the derivative of the state with respect to the parameter possesses certain smoothness properties. These properties lead to local convergence results for a gradient-based estimation algorithm based on quasilinearization. Numerical results concerning a delay-differential equation that indicate the effect of a forcing function on parameter sensitivity are presented
Keywords :
convergence; differential equations; distributed parameter systems; parameter estimation; delay-differential equation; distributed parameter systems; evolution operator; forcing function; gradient-based estimation algorithm; identification; linear abstract Cauchy problem; local convergence; parameter estimation; parameter sensitivity; parameter-dependence properties; quasilinearization; unbounded perturbation; Convergence; Cost function; Delay effects; Delay estimation; Differential equations; Distributed parameter systems; Gradient methods; Parameter estimation; Spline; State-space methods;
Conference_Titel :
Decision and Control, 1989., Proceedings of the 28th IEEE Conference on
Conference_Location :
Tampa, FL
DOI :
10.1109/CDC.1989.70187