DocumentCode :
3240578
Title :
Predicting User-Perceived Quality Ratings from Streaming Media Data
Author :
Csizmar Dalai, A. ; Musicant, D.R. ; Olson, Joe ; McMenamy, B. ; Benzaid, S. ; Kazez, B. ; Bolan, E.
Author_Institution :
Carleton Coll., Northfield
fYear :
2007
fDate :
24-28 June 2007
Firstpage :
65
Lastpage :
72
Abstract :
Media stream quality is highly dependent on underlying network conditions, but identifying scalable, unambiguous metrics to discern the user-perceived quality of a media stream in the face of network congestion is a challenging problem. User-perceived quality can be approximated through the use of carefully chosen application layer metrics, precluding the need to poll users directly. We discuss the use of data mining prediction techniques to analyze application layer metrics to determine user-perceived quality ratings on media streams. We show that several such prediction techniques are able to assign correct (within a small tolerance) quality ratings to streams with a high degree of accuracy. The time it takes to train and tune the predictors and perform the actual prediction are short enough to make such a strategy feasible to be executed in real time and on real computer networks.
Keywords :
data mining; media streaming; quality of service; application layer metrics; data mining prediction techniques; media data streaming; network congestion; user-perceived quality ratings prediction; Communications Society; Computer networks; Computer science; Data mining; Educational institutions; IP networks; Large-scale systems; Network servers; Streaming media; USA Councils;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications, 2007. ICC '07. IEEE International Conference on
Conference_Location :
Glasgow
Print_ISBN :
1-4244-0353-7
Type :
conf
DOI :
10.1109/ICC.2007.20
Filename :
4288691
Link To Document :
بازگشت